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specific styles remains a challenging task. In this project, we

introduce a novel two-stage diffusion pipeline with a style QUANTITATIVE COMPARISON

injection module and attention separation loss. Compared to

previous works, our approach generates images more closely

aligned with target styles while preserving object features and CLIP-I CLIP-T

overall structure, achieving superior results in both Custorn Diffusion 76,48 50 33
#, quantitative and qualitative analyses.
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Figure 1. Our two-stage diffusion framework for 3 Q
multi-concept text-to-image personalization \\
N

Our method consists of two separable stages. In the first stage,
the Concept Conductor framework fuses multiple concepts into
a coherent image. The ED-LoRAs were trained separately, and “A on the right “A <flower_1>in “A <dog>, a <pet_catl> and a
were combined with Stable Diffusion v1.5 while sampling. and a <dog6> on the left.” a <vase>.” <dog6> near a forest.”

During inference, we employed Dall-E 3 model to generate
reference images, and used segment anything model to obtain
masks of reference images and data images, which are used to Concepts Ours
manipulate the attention layer in the model.
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The second stage subsequently infuses Zg with a new style
using [IP-Adapter and preserves its structural layout through
ControlNet. The IP-Adapter extracts stylistic features from
reference images, while ControlNet leverages control maps to | ':::E‘a \
ensure layout fidelity. Figure 2 demonstrates how these

conditioning modules enable flexible style injection at varying & ITERTINE STNERE & HIEEEEE I &
levels while maintaining spatial coherence. o Effects of Layout Alignment Loss
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Figure 2. Style injection using a single style reference

LAYOUT ALIGNMENT LOSS CONCLUSION

In this work, we present a novel two-stage diffusion framework

designed for style-adaptive multi-concept personalization, achieving

high visual fidelity and consistent style representation. Moreover, we

propose an attention separation loss to ensure spatial separation

between concepts. Our framework outperforms Custom Diffusion and
LoRA in multi-concept text-to-image personalization.
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Where M =N(N —-1)/2 represents the number of pairs.



